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L Quantum Mechanic: ¢)"b {,é‘\“‘\‘ C'f\ o

1 was onee though that the motion of the atoms and subatomic pm-nclf‘h c’\d‘ﬂ
vould be expressed using the law of classical mechanics imrmlucc‘d. ": 2
eveiteenth century by Lssag Newton, for these laws were very -*‘"NLT».'.“. %
A explatning the motion of every objects and l“i"‘t‘h‘-(‘*’s'-’g‘),.h‘_“‘..':‘.\“'
towands the end of nineteenth ‘““'m,\ ;‘-M»crhm-nlul evidence accumulated
\h““'"“‘m:ﬁ“);ll mechanics tailed when it was applied to very small
pur!iﬂ?‘?;u\d M 1\\.1}\*&;“\'\6{:(,?{“ discover the appropriate cnm‘c}.\ls and
Suations tor describing them. We deseribed the coneepts of this new
mechanies, which is ealled quantum mechanics.

Quantum mechanies is o braneh of science that deals with atomic ;!nd
molecular properties and behavior of matter on & 1\\icl‘u$'.‘0l’ic scale. While.
thermodynamics may be concerned with the heat capacity of @ gaseous
sample, quantum mechanics is concerned with the specific changes i
rotational energy states of the moleeules, Chemical kinetics may deal \\‘.ilh
the rate of change of one substance into another, but quantum mechanics
is concerned with the changes in vibrational states and structures of the
reactant molecules as they are transformed., '

Quartm mechanics is also concerned with the sping ot atomic nuclei and
the populations of excited states of atoms. Spectroscopy is based on
changes of quantized energy levels of several types. Quantum mechanics
ISThGs seen to merge with many other areas of modern science,

A knowledge OF the main ideas and methods of quantum mechanics is
important for developing an understanding of branches of science (rom
nuelear physics to organic chemistry. 7 ;

— —— . o~ -
gy wp 22ARUosehy Dlay-el),

¥ The modern applications ol quantum mechanics have theig_roots in the
dey cluwnWmuul the turn of (end of) the century. Some of
the expariments, now almost 100 years old, provide the physical basis for
INLerpretations of quanimm mechianices. The names associated with much of
this carly work (e.g., Planck, Finstein, Bohr, de Broglic) are Tegendary
(innagtrrmryTin (e realin (eordd) of physicsTTREn elegant experiments and
theorie¥ Tow seent amost commomrlace to even beginning students, but
these experiments were at the forefront (imitial) of scientific development
in their time.

2. Mathematical Formulas:
There are different mathematical formulas which are n

ceessary
o understand them:
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A Coordination System:

- —— . three class
Ihere are several types for the coordination systems, three ¢

of them can be explained as in the following:

: ——— . : > axis's
. Cartesian System: where the point (P) include three a

X.V,z as shown below:

zZ

.
AN
X
\
-

AN FR— 4

X
Figure 1: Cartesian coordination system.

All these points lies at:

0 2 A A OO e SN SR SRR SR SRS e s s s RS 1 i
T i - - R e T LU LA L bk 2
—00 < Z K 400000000 R T RIS £. S, 3

If the point moves, it varied with respect Lo time i.e., they
behave as a function of time hence:

AT = AXAYAL . eeevvinneeereeenreiii i 4
Where T is the volume that surrounded the certain point in space.

Cartesian coordination system is used in case of free particle and
particle in box.
SRR o e

2. Spherical polar coordination system: this system can be
expressed as the following Figure below:




A x=rsinfcos®

First Lecture

Quantum Chemlstry

® ™m0l

- .\
.
. v
-
¢/ s s
.~ I
ﬁ‘ ]
I N

Figure 2: Spherieal polar coordination system.

Where the point (£) is determined by the arrow r and the two
angles ¢ and @, the long of arrow r is represented by the distance
(0P). The angle 0 is called polar angle while, the angle @ is called
azimuthal angle (<l 1) which it lies between x-axis and the
projection of (0£) in xy plane. The relation between the Cartesian
and spherical coordination systems can be explained in the

following equations:

Spherical coordination system is used for hydrogen atom

system.

Home work: proof that:

2 s gl 2 2 :
7 =X + + VA o -
¥ Cf/)s"‘:-'

................................................... 4

YETSINOSINO S
W ESFERD  consmvranssass i e emme s e 6
ey R B R 7
UEGE Ry aRAoAN 8o sy e A S 8

£ RN G0 S R T, et eeraeeeaaann, 9
Q= RSB ATBOMD v rmrsssmosisssssisissisn 10



= _ZrSt_LfCt"r £ Quantum Chemistry Ch323

3. Cylindrical coordination system:  the system ean be
EXpressed in the following Figure:

Z

P(|1,¢.Z)

o

> b P

)
@

:
Figuie 3: Cylindrical coordination system.
The point p is represented by the two distance p and © and the
angle @ which represent the angle between X-axis and the
projection of fp (p) in xy plane. The relation between
Cartesian and cylindrical coordination systems is:

X OO | i O G B N SR R Il

Y =080 ccaiasssnsen RSO R e AT |2

Z=Z. e, R R S SRS s 13
05505 A0 s waswanvasmns e sy NN AR R .
0.€¢ S 2. sveovivias O vT— 15
00 R 7R F W sirvassens e v aareeeeas S 16
dr = pdpd(l)dz ........................................................ 17

The cylindrical system is used for the atoms depending on the
problem that it should be solved.
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Vg oF s equation by wsling the sty winnher 1

Vol (n ‘
vier o Y \
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AR RS N
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el part (N

e Cranms 1
O oy i

et s “\‘l“o-“l‘l“t‘tl h‘\ Wi ""NN: the T
operator) where |

) ""“' "
‘: - .h a: un‘d the second part i an inaginary part (¢
s Ahe unic ol maginaey mombers wherens:

[ g ] N () =l 8 ()

or ench o
v ench complex number there s gonsort nimber 2%
C"v\t.\..m‘c, < \n

c--un-utc.lnca--||-n||-1|-o|n
21

TR R L RACA RS NS

:.. -\ "’vuanvnlunnuln

o wt o (.\‘ ‘ ,.\l)('\- - ‘.\o) o .\u\. 4 .\':""‘""“"“"""“""

LA

Lhe s e e e ———— ) [T

|#] = \/r wm (A Q)N = Ly) = ‘\/.\"' B P e
imaginary port into real pari).
an he used for

"9

TEEERELLA

Figquations 2825 pefirs to conversion the
Furthermore, all alpebraic processes for natural numbers ¢

Pnaginary nmbers for instanee:

;:‘ "' -’-‘i = (-\“ "‘ -"'.') "‘ l('\" "' .\’2) setassaan e bRINASY 'u-n-'cccnn»-qooo---.-:‘-.‘
:t‘ - }".! i (.\.‘ - -\I“‘) .'. i(‘\'l '—.v'.’.)Aoololl-ll-c;-u--Al-nun-tu-cau-o-.o...;....:‘.“
e praphically taking into accou

Jher can be vepresent

Thus, comples nan
peal part is NN

3 the Cartesian system i the
a Tp(x'v)
-t n>
:;) , Q{J,\\ )’JJJ \‘)-
i _ ‘ " w ‘J'\I
' o A Sl Vg

I

/" ,,,,,
fleal axis

P( DV"
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R e 3‘
- |8} = T uvnissssiimensspssssmmpamisiisiiasts R 26
Y
v
= P(r,0)
= /T ¥
o
= r
oo
o
i E /4
)) — K
\ P v/ -0 Real axis
Y £
)/} p
LN
d P(r,0)
x=rcosf.......... G Y evisesessesavesansusenausTeSISt 27
P =T SMG.ooveescssosmsoronsmupensssrasssivasssissd (G E e A Se 28
. z=x+iy=rcosf +irsind
Z=7(C0SO 4+ iSINO) . cccnniriirniaiiiiissssnenenenes Y. 29
.................................................................. 30
................................................ 31
2 ieveeeeeaseeeeessenrn e SR .
33

-----------------------------------------------------------------

n : on to convert |t o another function that different from each other
n their values. If an operator is 0", the function that affected by the
articular operator isOMF , the new function is g hence:

-----------------------

-"-'g ............... §

1
M/);JMJ,)& djvJ\w\;/uuud PN PR oW
’ ‘W')QL,.SOL.S a0 AP
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t _% :___()riginal function (F) | Yielded lunc“"A 1 (8) |

i S s X Cx .,__——-—]

;____\/L__ - y T < =
e e
d

Kot sinx cosx
L ’
2 -
a sinx —sinx
dx?

When the symbol (*) is appear in more case i.e. there are different
operators, they should be arranged in right form not in wrong e.g.:

@BYNL) = at Ay f ()] = @Rl ()] = B CO1
T O R S e € L

%

There are several types for operators some of them are including:
R
\

. Linear operator: 47//:) y“’}w D saad _pSW s -
It is an operator it is used for different functions to give the same result £

(SUperimpose) m diiferent processes that done against_the functions in M
separaiion manners. The operator is considered a linear |(' &
pa p NS D W b-‘.f

a"(f+g)=a"f+a Gierennersits s s e s 36
QMAS) = QAN eeeereeeeeeeiinns e 37

There are two types of linear operator includes:

a 4 , 49
1. -‘;(f+g)—dx+

ile the square root is not considered as an operator because:

h i =gl
2 E(af)-—adx ............................................................ 40

Example 1: The lunction is [{x) and there are two operatorsP® = di :
S~ 4 4 - 3

i Qh=x then:



23 =
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ol AN

QP (x) = x = (f) = L2 while:
PAQM () = - ([x. f(x)) = 2L2 4 f(x) Hence:
Q/\P/\f(x) * P"Q"f(x) But”PAQA - QAPA)f(X) = f(x)

2 b B o WV
2. Commutator OperatorsJ:all &l Jigar f/d N/\"’; /cJ SLv
If the two operators are equal then they called as commulator

o s G, =
‘ 'they not commutators for example if P* = 5‘ &Q" =73,

S sursedeos

_az A __a_i ,\A_PI\A
= & QP =g = ThusQP Q

A = 0 «— Commutator ___

s called the inverse operator ot unit operator (534! < 552).

an operator:

1 9?
ir’ rzsme 30 (Sme )+;2_3@67)2 .......... 45
) natlon (r, 0,09)
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\\,hc' B t) &
l'llnu; the operator is used for any function, if the result is the same
o ) . » A *
on multiplied by the constant, the function is called Eigett

uncti ; .
Junction and the factor is called Eigen value whereas:

l’:i e ) gl 2 . :
m-?m equations are very important in quantum mechanics to solve

gty roblem below table explain the different between Eigen and
not Eigen functions:

] 0N . . .
7 Function Eigen function or not
. £ x4 2x (not)
¢ sin(nx) —n?sin x ¢ngly-
e ne™ (yes)

wample 2: |s the functiond(x, y, z) = sin 2x.sin 3y.sin 4z is Figen

tion? fov AW arpavaden I

- v2e 9% 0a° I d*

9x2 ' ay?- sz
4 sin 2x.sin 3y.sin4z...... T . RSN ]
9 §in 2. SN 3. SINAZueviineeeiieiceiieeiieeee e 2
6/5in 2x. SIN 37, SIN4Zcc.conmininiiinnniiniisis 3

'2=¢‘-29 sin 2x.sin 3y.sin 4z # ¢(x,y,2)

H

 Function:
"’Qpndition to be the function an acceptable:

ne value i.e., it is not curved around itself.

he continuous



ch323

Second Lecture Quantum Chemistry e

oy - . - P> [ c i [ X
3. The integration of the squared absolute value for the function f(x)

should be having a certain value.

x)‘ %
x
> R

Figure 1: f(x) has five value for f(\) not onc value(afi acceptable).
B, i -.u V \

' f(x)|

re 2: f(x) isa contineous function( an acceptable).

F|ou|c : f(x) is not contineous function( not aceeptabie),

A

10
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; L A — V—S“’Jy ._,g:-l 7;,,'.M a2

SR 5 ¢ R . oL QLI

J»\Nf" V(t)—mv",@i:%/ ’5'77\0\4:'5:‘»)?

. 4

|

6%\.}9

1\-,_

\’/

Where C is the integration's constant that is time independem Rearranamg d" \ \/

gF dt/ of equati : LA 1y (A
- %q_w g 5> dac < z v\y\‘fﬂ
< = 56 ]
g V(x) ............................................................ Oﬁ) \
................................................................... 57 )
d Coordinates and Lagrange& Hamilton Kinetic (,)\3 J’/ S &Y

Y'QW \L‘ ’1' ‘5?

‘the kinetic equation by Newton's law Lm'teslan coordmates
ssed but the studying of the earth's motion: around the sun, the
pordinates should be used. Hence, the scientists thought to be
seneralized coordinates. Laemm..e and Hamilton are successful to
2 Kinetic equations by usmn the generalized ¢ coordinates. It should
srstand an idea about the g “generalized coordinates ..md llu vectorial
conservatye sy slenLconslsts of two bodies. Thus, to define the
e T is system. the phce and the velocity of both b bOdIE‘«'» should be
iTel am e to the time. If the Cartesian coordinate is used then six
oordinates should be used (x1:y1:z1. X2:y2:22) with six vectorial
" 1:Z1: X2y2:z2). Generally, for any system include N bodies
coordinates and 3N vectorial velocities therefore; it has 6N

)i or (degree of chanoes) Ifthe g ;_.,enu"\hzed coordunlcd is

(Generalized velocities) R A R RS

1C generahzed coordinates and velocities, the Kinetic equations
ivatives according to Lagrange and Hamilton.

iations: Lagrange equation L (q, q, t) is a scalar dynamic
ectorial dynamic quantity) is defined by the followi ing

\‘V\‘k W\O% = _J\Vrak. T_W
\ N LN T A .M.NJ\Y - ‘I.I_[ﬁ(\;{lu‘
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59

---------

N BT g
1 is the function ot‘gcncrallzcd.coo‘
ray which is the functio i

or Lagrangs
The gcncral formula for Lagrang :p))

rdinates and

T is the kinetic energy whicl n ftor the

velocities; (V) is the potcntial ene
generalized coordinates and the time.

A q¢ — equation is: - e 1/ .
\ M/.A;q\wo — (anzlod!) awy;{-'/yo/ (P :}/J\Y‘
o S0 2 b DA (S 00 M
Oq‘ o = DT ST \3;'
n 60 is second order differential equation.
e for Lagrang¢

otion is an applied exampl :
back the oscillator intg the start pom.l is
the oscillator from this point.

le converted the gcncralized

stance, simple harmonic m
ere the force that re
rtional with the moving of

kinetic quantities in this examp
es into Cartesian coordinates as in below: @0\1 {_)

q; = x . T(q.49}) = %mx'z ,V(q% %'gxz

Lagrange function (q,9) according to equation 59:

1 1 .
;mx'z —--z-mkx2 6l

ate the kinetic equations:

=KX urneorss e s e S g Ra S S AL SR O 62
) P
................................................... 63
ation 63
AR SN SRS BT RO 64
.......................................................... 65

sresents the generaliz
ese wdrm_omeqtunlmx’, my®or mz*

~$4;;-A ; ‘;s\L\\\

RasbaRRrRsa R
: P L L e L
R
Serenraran
“reea



R —

Ch323

Fourth Lecture Quantum Chemistry -

Hamilton's equations: IR HTEE les is written 13

\q‘\ : icles ) L\

Hamilton's equation for the certain system include N parti : . .-

as below: ' R : B
, = X% pq; ) RO AP, SR 2 2
b J‘f—Z}LIP,q,—L ...................... 3 !

Jy-3

: is the
_ . 's function, pis
Where H is the Hamilton's function, L is the Lagralngfts l'l + i be’(]’erived
mend  Zeneralized momentum and qjis the generalized4e -O:iv); system as below:
:,m-v: tWo equations relative to equation 67 for the conserva

o
A - i 6
&K _ » l}vs e A A
T}J —ql......-.".....t...(.‘.'; ........... ) < .‘ e / (—i\ ) b yaim
! A - o) ‘) : , & \o
< O 77N 0
odn, - TR, OO
B EETTTIS == S

r i s i rvative
on H represents the total @it the.s.ystem 1; cozzzra‘ized
be prove it by depending on the definition of the g
m according to the equation 59:

......... 59
.l X V ,t) ......................................
, S T S et 71
......... x'b'\a,‘i - ‘
2 o \ &N(I
n of equations 59&71 into equatior: 65: "_K 9 Y .
v ol
Vo omsnonsisntam e R
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L0 78 T 1O s mme U sl O
Hence:

= ar

v S —F 4 N e & ¥ 3 3 L 77

215 = T esssesmemspsssssmimianrssessms 9 e
Substitution the above value in equation 72:
R R T A T N— IO s 78

As shown above in equation 78 Hamilton's function represents the total
energy if the system is conservative.

Problem (1): write the Hamilton's function for hydrogen's and helium's
atoms

Solution: for the founding of Hamilton's function for hydrogen atom, it
can be assumed the nucleus of hydrogen's atom is constant and there is an

electron is moved around the nucleus by the distance equal to r: L) D
& . (l) \
P +e 3 )' W
‘ /\4/| :)\\, .
o) )J
Q )’)J \"' C 1 2p2 p? oA ~P \
2 ( jeJ pol) o mivt p? ( mv =0\
2 2m  2m :

Where m is the mass of atom and p is the moment. To write the Hamilton's
function H which equal 10 the total of kinetic (T) and petential energy (V)
for hydrogen atom: '

H=T+V

(+€)(-e) e?

gr=L 48285

Zm r

For helium's atom the Hamilton's function, assumed that its nucleus iy
constant, the distance between the nucleus and the first electron is 1y while
the distance between the nucleus and the second electron is ¥4 while, the
distance between the two electrons is ry2 then the Hamilton's function lor

Helium's atom:
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I

,.‘ *
g H=T+V
= i pi _ 2e° 20 | e?
_, V. P LR L )
‘7'" T | rp T
for the solid

Problem 2): write the Lagrange's and Hamilton's functions
; nic motion to

cle has the mass (m) which is moved by a simple harmo
.at distance about (x):

: according to the mentioned functions as the particle is moved

'.,‘. -
_iu')))
oA

s with the mass my and m: respectively,

M » \’ \‘ .
by the distance lmwm e V) J\

For mstance, if the twosparticles are
-y and 22 the square ] o’\k

s attractive particle

energucs represe nt
rdinate.

2 _.),‘)2 $ (2o = T e
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the

Itcan be simplified by using the central's mass coordinates X, Y. Zand -

internal coordinates x, y, z. the central's mass coordinates are represen
by the following equations:

X = MaXitmox, . 80
"lx+m2 ..........................................................

Y = Maditmay, 81
ml+mz PSSRSOy UL DR TR R G LR i

z s m;z,+m222 82 ))
e s L A ‘og

The internal i i \ 'Q {/‘7]

rnal coordinates is represented by: -~
A
XX = X0,Y = Y3 = Y102 =23 = Zyeercunninvriranminsasnisianssennenes 83

2
A}
plying Lagrange's function for this system by more calculations the * ’ﬁ\&:’p

"p wlap MO "‘)\""fz
€73 - ¢ ’

L)(X2+Y2 4+ z'z)%’#(x‘2 +y*+22) = Vixy,2) 84
-~ P

: — / %

P e T /‘h}ér’&«ﬂ (fledeY Ag,.wﬁcu‘“: ds %;,_
RS fesidnei Wﬂf.—-.—.......“.......:;'..

d ST =T

Oy ¢
he re duced mass and V is the potential engrﬁ; which is depend
1al coordinates. The kinetic equation can be obtained by using

= m the equationw%r ( \6\_:%'5 - \(:\_\f'; -
L _———— O 2 ",
_ 0, (m1 + mz)Y" =0, (ml + mz)Z o\ 3 N 86 05(_3{’

and the kinetic energy also should be consfant.
~— ——— P Y

ely which simplify the calculations.
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" o\ Goanceus = .

Blackbody Radiation;  “= '« LD | 2 ot B2
When an object s heated 1o um.andc.s{el:fﬁ (lightning) it emits

—5‘_
electromagnetic radiation. The nature of the object determines 10 some
1 2
2y SXtent (range) the type of radiation that is emitted. but in all cases a range

_{\b.

or-distribiilion of rad: v €
L‘/p “dtsn ton of radiation is produced. It is known that the best.abserher
g, e radiation is also the hest emitter of radiation. The best absorber is a 50 <

! (.a”e G s i ¢

v M d wl which absorbs all radiation and from \\Tlal\ none is .

s reflected. lf\\'e heat this b blackbody to incandescence, it will emita w hole®?/
\M-—‘—.

v )
> };ra',’a‘-‘s-m e]ek‘llomwmlu radialions Whose energy dmnhulmm depend on .

0

Ww
1ation usmg the laws of clawml pln StCS Were "”’

success?ul In these'ltu ts it w

. X

G

- s . & : e In]

ed T0 obtain™am eXpression that would ﬁhcl the relative °

3 o2 g 2 -
nount of'r ol each frequency. One of the carly altempts
ift blackbody radiation was made by W. Wien. The general form

o . - -

dtion that Wien obtained is; ‘{r'}.i: e

| \ Q‘ !
- IR P AR O PP 1 55 e O SR S ChL S S TR Pl >... v*-' ..... '..
' 7') \puse it (E'pk\ B2,

the amount of energy of frequency v cmmed per it \folumT‘
»:1o y and g (v /T) is some function of'v /T. This result gav eT’m
the observed energv dlS(l ibution aulum,cr wavelenuths ilul J

;Ra} I‘:l'_:h.

74

wresredsssiaatananny EELEE TR debarmnetinanen Beddsbasarsraaraaatnn AR EERERA Al e et sy .-2

velocity of light (3.00 x 10" m/s) and Kk is Boltzmann's
23] k"', Another expression was [ound by avieish and
ee————
e shape of the energy distribution as a function of°
/i the region {shmuwx elcn'llll;)_mc_c\musmn is

Bn’v’kT
T S R R e 3
C3

o relationship predicted the intensity of high-».
joli—Jeans lun predicted the intensity of low

blackbndv Neither of these relationships
N T aiaad !
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) ) H . . : i > o s 7‘ 2
predicted a distribution O radiation thay goes through a maximum at some

lreque : ;
Heney with smaller Famounts emitted on cither end of the spectrum.

9_‘ Raviivgh nnd Jeans
10 "3 - Deoo .
“\r\' g F 1 " plﬁnK awd \‘-0’3 .
S \s Y N i \M ' J/
) 3- Yty W
-\ A " \ ! .)\/’ (o . )\<
=% ¥ \ Wl
R o> 27 g,
£ o i \250K VY on
- J ‘ - ‘}D’ ” ..if
S Ranads 00 ) )9 J E) L
T T T T T \!) g 9 AN » i \ L
I T T s 6 \}/I: 8 )})' et
M) % \or / i
Figure 1: the i mtensity of light that emitted from Black body radiation ¢
at different tem peratures relative to Rayleigh and Jeans. /"";
| ﬁ o)\ S
The problem of blackh dy radiation was finally ¢

xplained in a satislactory
\ Way b}' Max Planck in L‘){l() Planck sllll .1~.sumgd that the absorption and
emission of l.ndmlmn GIEN

[rom some wﬁl of osull itors. Planck made a
lundnmcdf’i‘ 158

sumpum]h.u only certain Ircqucnucs' were posslhlc for lhc (&
’
OSCITIAtors instead of the whole

range ol frequencies that were predicted by 5

P,
Clag\ltarﬁ&,'J.Jﬂlts TIW&SIMU frequencies were pru(.um‘:.c‘)lo be
some muTlplc ola [lll]{lll)clll.ll frequency of the oscillators., v, The allmwd

.-\‘"N-
frequencies were then vo.2v, . 3y, . .. . Planck also assumed that cncn_\
N
nccded 1o bv absorbed 10 cause the nsullalnr o go from one al'mud

, lrcqucncv o the next higher one and that energy was emitted as the yi
Ircqucm.y dropped by vi. e also assumed that the change in ener ey wWis |/
1

proportional to the fund.uncnl.nl frequency, v, Introducing the constant of
B \ RO A,

pmporl:ona ity h, 2and T 5N GG oy s VY20

hUo.............. ...... A — sy sk S P

thu. Tis Planck’s constant, 6.63 10 ¥ 1.s. The average energy per

oscillator was found to be: g =
——E ' ' ; ,‘. it ' B )
.G‘(I:‘)='—,7’:hi_",.n‘.-.n..,... ..a....l \;.....’..".x*;.':‘..'l..,.>.\.‘,_ Sy
S") (e¥7 1) j""p J'S o ).,))',/,, “

Planck showed that the emitted radiation has a distribution on given by:

k L e X &
M NN S e NI Aty L,
gt hve - ¢ -
\/‘( ,)-—"”u (E)— L T R AT S SR SOOI O SO (},

2 C 7 M (e R ke beote



Fifth Lecture Quantum Chemistry Ch323

flowing when light was involved became 1o be known as the photoeleetric
effect. Studying the photoelectric effect involves an apparatus like that, >
shown schematically in F lz,urc#. An wa_te_d_mbe is arranged so that .7
, the highly polished metal. such as sodium, potassium, or zinc. 10 be
\, 4 illuminated is made the cathode. When light shines on the_metal plate.
clectrons flow to the collecting plate (anode), and the ammeter, A. indicates
the amount of current. ﬁo\\m;_. Several observations can be made as the ,;
frequency and intensity of the light are varied: ;qn /:”‘

E.{ / / ”p
oy mfjf“fu

Ryt % s Z/&g\’ \ J\,}(’J’

- (',’ )

= gt " L
({.5 ),)y.‘o ! l'lg /‘)\,‘u\) /\,,J"l —
\ O e ' ' &
e 7: Experimental arrangement for studying the photoelectrlc .J\"
- fg)\y-//'
)/\JJ-'\ Q,\_)H/()l ._)‘\*-:"J‘:.»S- 'D>S ,\'J'r > il

'llghl must have some minimum or lh;esh&d h'equencx v. in order
. a0 R

currem to flow. f; o PP s 8 ,\, s

: \.D
ferent "I\L[al\h ve different threshold frequencies.,' 7 )J “’\' 2 o
he light stnl\’r':pv the metal surface has a frequency greater than v. the
ns are ejected with a kinetic enex ey that increases with lh-. !'requencx
E f,;j“‘?a’/t") )/0 ““%’N‘&u,}}.&-ﬁ-"’.ﬁj 4
aumber of electrons ¢jected depends on the intensity ol lh‘ ltht bul

jetic energy, depcnds only on the frequency of the light. A2 ).n«\\ ol
e 90 5 30K 3 a5 B Yoo WIS R 1S40 | 852 LA
tron lravelmg toward the collector can be :topped if a negative «i

......

-

- cu.uud In fact. it is the electrostatic cnergy ol th uLulsmn
electron and the collector that exactly equals the Kinetic energy

getron. Therefore, we can equate the two energies by the equation {
............................ : s I —— .
¢ of the photoelectric effect was provided in 1903 by
n, :“mslcm based his analysis on the relationship between the
v that was established-in 1900 kaPlanch. It
b v LA PPN Zooith v ol 1t
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was assumed. that the light behaved as
photons) and the ener gy of
collision with an electron o

a collection of particles (called _
a particle of light was totally absorbed b\ the -
SUHFics oF & metal ik n the metal surface. Electrons are "bound 10 the -,é /
different for each ty :\ e alied the Work functlon w. which is 7 =
: S 0 . lf\—"U eI m—’* ) s pedy
}{m/v' ./'u)/.d_u‘) Lot :
‘..n”(/‘.J /AJ—‘JD _),'-B——Ll

?,):\ (U}/..a)l) u”,-c)\(n_
D s - v o) SN Lt pUNG
'“’)’)\g}\% //j Nrp) -/)/\AJ,\)\?"' gL

iy, e

re 8: The relationship between the kinetic energy of thc ejected 5
ons and the frequency. canatly _sr-—"...» =207 e Buay D
20
Wos 21t esp o 50y )03 4l C"‘r/ Gas
the E:lectron is ejected ﬁom_lhe surface of the metal, it will have a
"‘_éTlErgy that is the difference between the energy of the incident
an(_i_ the work function of the metal. Therefore, we can write

hv—w.....a.,.\ = =M2 =2

be seen that this is lhe equation of a straight line when the kmgné “?‘
“of the electron is plotted against the frequency of the light. By It e

e _I’rg_l_genc_){_pf.l.he_lighl and determining the kinetic energy of the
s (from lhe stopping polemual) a gnph like that QW T sed

cy, and the slope ;s Planck’s constant h. One of tlu \;gm freant” X

n the mtelﬁ‘ "etauon‘LBi the phow s_that lh.ht is ‘{V '

wave, Many phouwoltau, devices in common use loda\ (!whb, /
g M e
counters. cic.) are deCd on the photoelectric effect. 5 LAl

k——)ﬁ P o ()aﬂ N2
‘ a“vf/[::;ligy{\ o Do N“"A“%L el 9

light behaved {{J[:(‘nh waves (diffraction. as proved by Young in

’.‘ panulc s (the photm ectric _etlut shown by Einstein in [903),
re of light was debated_for many years. Of course. light has
cs of both a wave and a particle, the so-called pariicle—wave

9”4 Louis de Broglie. a young French doctoral student.




